The quantitative surface analysis of an antioxidant additive in a lubricant oil matrix by desorption electrospray ionization mass spectrometry
نویسندگان
چکیده
RATIONALE Chemical additives are incorporated into commercial lubricant oils to modify the physical and chemical properties of the lubricant. The quantitative analysis of additives in oil-based lubricants deposited on a surface without extraction of the sample from the surface presents a challenge. The potential of desorption electrospray ionization mass spectrometry (DESI-MS) for the quantitative surface analysis of an oil additive in a complex oil lubricant matrix without sample extraction has been evaluated. METHODS The quantitative surface analysis of the antioxidant additive octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix was carried out by DESI-MS in the presence of 2-(pentyloxy)ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate as an internal standard. A quadrupole/time-of-flight mass spectrometer fitted with an in-house modified ion source enabling non-proximal DESI-MS was used for the analyses. RESULTS An eight-point calibration curve ranging from 1 to 80 µg/spot of octyl (4-hydroxy-3,5-di-tert-butylphenyl)propionate in an oil lubricant matrix and in the presence of the internal standard was used to determine the quantitative response of the DESI-MS method. The sensitivity and repeatability of the technique were assessed by conducting replicate analyses at each concentration. The limit of detection was determined to be 11 ng/mm(2) additive on spot with relative standard deviations in the range 3-14%. CONCLUSIONS The application of DESI-MS to the direct, quantitative surface analysis of a commercial lubricant additive in a native oil lubricant matrix is demonstrated.
منابع مشابه
Mass spectrometry of intact neutral macromolecules using intense non-resonant femtosecond laser vaporization with electrospray post-ionization.
Intact, nonvolatile, biological macromolecules can be transferred directly from the solid state into the gas phase, in ambient air, for subsequent mass spectral analysis using non-resonant femtosecond (fs) laser desorption combined with electrospray ionization (ESI). Mass spectral measurements for neat samples, including a dipeptide, protoporphyrin IX and vitamin B12 adsorbed on a glass insulat...
متن کاملReversed phase liquid chromatography hyphenated to continuous flow-extractive desorption electrospray ionization-mass spectrometry for analysis and charge state manipulation of undigested proteins.
The application of continuous flow-extractive desorption electrospray ionization (CF-EDESI), an ambient ionization source demonstrated previously for use with intact protein analysis, is expanded here for the coupling of reversed phase protein separations to mass spectrometry. This configuration allows the introduction of charging additives to enhance detection without affecting the chromatogra...
متن کاملAnalysis of Oligonucleotides by HPLC-Electrospray Ionization Mass Spectrometry.
A new interface procedure has been developed that allows, for the first time, the high-efficiency analysis of synthetic oligonucleotides up to 75 bases by reversed-phase HPLC and on-line electrospray ionization mass spectrometry. For oligonucleotides up to 30 bases in length, single-base resolution can be obtained with low levels of cation adduct formation in the negative ion electrospray mass ...
متن کاملQuantification of Melittin in Iranian Honey Bee (Apis mellifera meda) Venom by Liquid Chromatography-electrospray Ionization-ion Trap Tandem Mass Spectrometry (LC-ESI-IT-MS/MS)
The current research aimed to quantify melittin (MEL) in Iranian honey bee (Apis mellifera meda) venom. To this end, a liquid chromatography-electrospray ionization-ion trap tandem mass spectrometry (LC-ESI-IT-MS/MS) approach was employed. Melittin is the main toxic peptide of honey bee venom with various biological and pharmacological activities. It was extracted with...
متن کاملCoupling desorption electrospray ionization with ion mobility/mass spectrometry for analysis of protein structure: evidence for desorption of folded and denatured States.
A desorption electrospray ionization (DESI) source has been coupled to an ion mobility time-of-flight mass spectrometer for the analysis of proteins. Analysis of solid-phase horse heart cytochrome c and chicken egg white lysozyme proteins with different DESI solvents and conditions shows similar mass spectra and charge state distributions to those formed when using electrospray to analyze these...
متن کامل